
August 2002 www.stsc.hill.af.mil 19

Software development is a beast for the
many organizations whose project fail-

ures keep baffling senior management and
clients. But it is a beast that can be tamed.
In fact, hundreds of organizations have
already done so. Earlier disciplines show
the way.

Executives control whole businesses
with financial information collected and
analyzed by accountants. Manufacturing
executives cost factory production with
data supplied by cost accountants. It fol-
lows then that software projects can be
managed with appropriate information –
progress indicators applied through met-
rics-based management.

Beyond the project, however, software
development involves a broad range of
stakeholders – client management, users,
outsourcing organizations, and high-level
management. As a result, not only must
we establish measures and their collection
and accessibility, but we also must com-
municate the nature of metrics-based
management to these stakeholders.

Core Measures Are
the Foundation
The measures underlying effective soft-
ware management are effort, time, size,
and a measure of quality or reliability such
as the defect rate (or its reciprocal, mean
time to defect). These key measures need
to be clearly defined. The procedures for
collecting them need to be clearly speci-
fied. The resulting data need to be kept in
an accessible database.

Then, to use these four core measures
for estimating, bidding, and project con-
trol, the industry has to establish the rela-
tionship between them. Let us back up a
minute and consider the relationship
behind any means of doing work:

Work Product (at a Quality level) =
Effort over a Time interval at a

Productivity level

One new term, productivity, has
appeared. It appears that work measure-

ment needs a fifth core measure, produc-
tivity. Where is this measurement to come
from? Let us restate the foregoing rela-
tionship in software terms:

Size (at implied Quality) = Effort x
Time x Productivity

From this expression, we see (rear-
ranging it by algebraic methods) that
Productivity is a function of size, effort,
and time:

Productivity = Size / (Effort x Time)

In other words, software productivity
comes from the core measures, and we can
acquire them from completed projects.
However, software productivity has been
conventionally defined as size/effort (con-
ventionally from economic theory, out-
put/input). Hence, we need a new name
for this version of software productivity
that includes the time schedule. We called it
process productivity. It is the productivity, not
just of an individual programmer produc-
ing code (software lines of code/person-
month), but of a project full of all kinds
of software people operating over the
time period of the project. Hence, this
version of productivity includes the capa-
bility of requirements gatherers, analysts,
designers, implementers, and testers. It
covers the effectiveness of management,
process, modeling, and tools. And not so
incidentally, it is affected by the under-
standing with which stakeholders
approach the software task.

Unfortunately (for the sake of
progress in software estimating, control,
and management) people have had some
difficulty grasping the fact that the sched-
ule planned at the beginning of a project
does have an effect on the productivity
that the software process can achieve.

To define this relationship more pre-
cisely, Putnam analyzed a broad database
of completed projects. The general work
relationship set forth above held, but the
resulting equation turned out to be nonlin-

ear, that is, effort and time were raised to
powers. The basic software equation
would then be:

Size (at some specified or attainable
Quality)=Efforta x Timeb x

Process Productivity

The databases from which Putnam
derived the relationship supply the values
of the exponents, a and b, but those data-
bases do not supply the value of process
productivity at which the software organi-
zation will carry out its next project. This
value is best calibrated from immediate
past projects. Thus, process productivity
becomes the fifth core measure, derived
from three base measures.

The other input value to the estimating
relationship – size – is appraised from
what is known about the project at the
time the estimate is prepared. If the size
estimate must be made before much is
known about the product, it will likely vary
substantially from the eventual completed
size. The corresponding effort and time
estimates may, accordingly, be equally far
from the eventual reality.

In software development, the relation-
ship between effort and time is multiplica-
tive. That is, if the size and process pro-
ductivity terms are considered to be fixed
in a particular application, estimators can
shorten time only by increasing effort. Or,
if they wish to reduce effort (and cost)
they must allow more time. According to
this relationship, effort and time must
move in opposite directions.

Stakeholders Must Use
the Relationship
Measurement systems may be operated in
a detailed sense by a specialized measure-
ment staff or even by project manage-
ment. Details refers to the definition, col-
lection, and databasing of the measures
and the mechanics of using them for esti-
mation and control. In addition, all the
stakeholders from client management
onward must understand metrics-based

Control the Software Beast
With Metrics-Based Management

Ware Myers
Consultant

Living on a finite planet with a day length regulated by a sun implies that we have to complete the following: a quantity of
work (measured by size), at some level of quality, within limits of time, and effort, at some degree of productivity. These are
the five core metrics that enable managers to estimate and bid software projects, and control progress during the project. Higher
executives and clients need to understand this pattern because, otherwise, they are the prime source of unrealistic expectations
and the resulting failures.

Lawrence H. Putnam
Quantitative Software Management, Inc.

Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering August 2002

management, in a broader sense.
For instance, it is often high-level man-

agement that sets the finish date to meet
business commitments and lower levels
that work out the requirements. Neither
group may understand clearly that the
amount of work needed to satisfy the
requirements determines the effort.
Moreover, they often fail to understand
that the time (schedule) needed depends,
as the foregoing relationship demon-
strates, on the amount of effort financed.
Furthermore, stakeholders have a strong
hand in other factors entering into project
estimating and bidding, such as the follow-
ing:
1. A key measure in the estimating rela-

tionship is the size of the eventual
product. Size is often measured in
source lines of code, but it may be rep-
resented in any unit that represents the
functionality to be produced by the
project. Selection of that unit is a man-
agement chore, often involving the
client as well.

2. The amount of functionality is clearly
unknown when the eventual product is
little more than a gleam in some high
executive’s eye. Estimation accuracy
increases if it can be deferred until the
product is delimited, defined, and de-
risked. De-risked. Now there’s a word
you won’t find in your dictionary.
Books abound on software risk man-
agement. All we mean at this point is
that you have to identify the important
risks and mitigate them. That does not
mean you have to solve them before
bidding. It does mean you have to
foresee an approach to solving them –
an approach for which you can allow
sufficient time and effort in the esti-
mate and bid. Clients and management

control how long making this firm esti-
mate can be deferred, not the project
or estimating staff.

3. Basically, there is a trade-off between
effort and time. Within limits, planners
can reduce time by increasing effort.
They can reduce costs (effort) by
allowing a little more time. They can-
not have both at the same time, except
by increasing process productivity and
that takes time on a longer scale than
project schedules. Therefore, stake-
holders must be satisfied with a rea-
sonable trade-off. There is no golden
shortcut. That is a hard lesson for
clients and higher management to rec-
ognize and accept.

4. Clients and management are up against
business imperatives – get it done, in a
short time, at an effort (cost) within
the client’s reach. But development is
up against another set of imperatives
symbolized by the relationship set
forth above. The two sets of impera-
tives have to be reconciled. It helps if
clients and executives have a grasp of
the software relationship. It also helps
if software managers understand busi-
ness pressures. Sometimes they can
strip down project functionality to
come closer to business schedule-and-
effort goals.
Finally, the software relationship is not

a law of physics, that is, each term is
uncertain to some degree. We may gain
some insight by comparing the software
process to a communication channel, as
researcher Claude Shannon employed the
concept [1]. Shannon originated the math-
ematical theory of transmitting informa-
tion over a communication channel such
as a signal over a wire.
1. The channel had a certain capacity or

bandwidth – a transfer rate in bits per
second.

2. It had a certain amount of noise, ran-
dom electrical signals arising out of the
environment that interfered with the
transmission of the bits carrying the
information.

3. As a result of capacity limitations and
noise, some of the bits carrying infor-
mation were distorted in transmission.
That was an error rate.

4. This error rate may be reduced by
improving the channel or adding error-
correction algorithms.
Similarly, we may conceive of software

development as taking place through a
channel called a process, extending from
systems definition and requirements cap-
ture to delivery.
1. This process has a certain capacity –

mechanically measurable as bits at the
input to the digital device that uses the
software.

2. It generates a certain amount of noise,
or defects, resulting from deficiencies
in the process or errors by the people
engaged in the process.

3. As a result of these deficiencies and
errors, some of the output bit-stream
is incorrect.

4. This defect rate may be reduced by
improving the process (for example,
instituting reviews) or correcting the
product (for example, testing).
In this theory, the signal containing the

information gets through the channel
(usually – sometimes it is overcome by
noise). However, the signal is normally
afflicted with noise, and the receiver has to
pick the signal out of the noise. In other
words, a communication process is uncer-
tain.

Similarly in software development, the
product gets through the requirements-
analysis-design-implementation-testing
channel (maybe two thirds of the time),
but the numbers that measure its progress
through this channel are cloaked in uncer-
tainty.

For example, the size is uncertain until
the product is shipped. The process pro-
ductivity is uncertain because the next
project may have different staff, run into
different problems, and so on.
Consequently, the effort and time derived
from the software relationship are also
uncertain. Sometimes they are so uncer-
tain that the project fails to complete. It is
overcome by noise. It runs out of time
and effort and has to be replanned.

By accepting this data uncertainty (or
noise), planners can employ the principles
of probability to provide enough time and
effort to increase the chance of successful

SEI Level 1 2 3

Productivity Index

F
re

q
u

en
cy

0

50

100

150

200

250
4 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Business Systems

The Productivity Index is simply a
way of expressing, in small index
numbers, the actual process
productivity numbers derived from
past projects. See Note at end of
article.

Figure 1: Quantitative Software Management – SEI Mapping: Example is for the process produc-
tivity of QSM’s 5000-system database, distributed over a long range

Control the Software Beast With Metrics-Based Management

August 2002 www.stsc.hill.af.mil 21

completion to whatever level management
sets. For example, it could ask for 50 per-
cent. At this point the odds are 50-50 that
the project will complete within the
expected effort and time estimates. It
could set 80 percent, providing an
increased assurance level by including time
and effort buffers beyond the expected
time and effort.

Process Productivity
Proves its Worth
The Software Engineering Institute (SEI)
at Carnegie Mellon University worked out
the five-level Capability Maturity Model®

(CMM®) in the late 1980s. Since then hun-
dreds of software organizations have
advanced from Level 1 to Levels 2 and 3.
A few have made it to Levels 4 and 5. As
a matter of observation and common
sense, the effectiveness of these organiza-
tions has improved as they gained levels.
Or, in the terms of the relationship set
forth above [Productivity = Size / (Effort
x Time)] their process productivity has gained.

Companies can compute process pro-
ductivity from three of the core measures
of completed projects. That makes it an
objective number, not a matter of opin-
ion. In measurement terms, it is an overall
metric indicator of the effectiveness of
software development of a project, a
series of projects, or the development
organization doing these projects. It is
also a number that can be correlated with
the SEI CMM levels and the work that
Putnam did in the mid-90s, as brought up
to date in Figure 1.

Note that the frequencies (vertical
axis) conform roughly to the standard
normal curve. Since many activities
involving human measurements follow
this curve, that fact suggests that the met-
ric indicator, process productivity, is on
the right track.

From here it is a simple mathematical
step to express that increase in process
productivity (with which not everyone is
familiar) in terms of schedule, effort, and
reliability improvement (which everyone
understands). The result is presented in
Table 1.

To manage software development
intelligently, project managers need to
understand the core measures and the
mathematical relationship between them.
They can then intelligently estimate, bid,
monitor, control, and improve their ability
to develop software over a period of time.

By basing the control of software
development on these five core measures,
management has the means to plan time
and effort commensurate with the func-
tionality (size) expected. By applying sta-

tistical methods to the acknowledged
uncertainties of these measures, manage-
ment can improve the odds of completing
within a plan. By advancing through the
CMM levels, management can greatly
improve its core measures. The stakehold-
ers need this understanding as well; it
enables them to interact intelligently with
the project managers and developers.

By extending an understanding of
metrics-based management [2] to project
managers, higher management, and stake-
holders, the software industry can get the
better of the beast.◆

Further Information
More information on the five core meas-
ures [2] is available at: <www.qsm.com>.

References
1. Shannon, Claude E. “The Mathemat-

ical Theory of Communication,” Bell

System Technical Journal 27 (1948):
279-423, 623-656. Also University of
Illinois Press, 1949.

2. Putman, Lawrence H., and Ware
Myers. The Intelligence Behind
Successful Software Management.
New York, N.Y.: Dorset House
Publishing, 2002 (to be published in
the fall).

Note
The actual values are very large, ranging
from 754 for Productivity Index 1 to
1,346,269 for Productivity Index 32, the
highest shown on the figure. Each
Process Productivity value is 1.27 times
the previous one. The details depend
upon the particular units of measure-
ments used such as years for time and
person-years for effort. We are trying to
explain the general idea very briefly, not
treat all the details.

SEI Level Effort
(Cost)

Peak Staff Schedule Mean Time
to Defect

Defects
Remaining
at delivery

Person-
months

People Months Days # of Defects

1. Initial 1542 91 26.0 0.34 255
2. Repeatable 831 60 21.2 0.52 137
3. Defined 241 26 14.0 1.18 40
4. Managed 92 14 10.2 1.78 21
5. Optimized 38 8 7.6 4.06 6

Table 1: Increase in Process Productivity Expressed in Schedule, Effort, and Reliability. Example
is for a 100,000-source-lines-of-code (SLOC) engineering system

About the Authors

Lawrence H. Putnam
is president of Quan-
titative Software Man-
agement, which he
founded in 1978. Pre-
viously, he spent 25

years on active duty, including tours in
the Office of the Director of
Management Information Systems, and
the Assistant Secretary of the Army,
Financial Management where he gained
experience in software development
from a top management perspective.
Putnam is a graduate of the U.S.
Military Academy at West Point.

Quantitative Software
Management,Inc.
2000 Corporate Ridge, Suite 900
McLean,VA 22102
Phone: (703) 790-0055
Fax: (703) 749-3795
E-mail: larry_putnam_sr@
qsm.com

Ware Myers is a con-
tributing editor to
Computer. Myers assisted
Putman in 1981 with his
first tutorial book for
the Institute of

Electrical and Electronics Engineers
Computer Society. This was the begin-
ning of a long writing collaboration.
Myers is a graduate of Case Institute of
Technology and has a master’s degree
from the University of Southern
California.

1271 North College Avenue
Claremont, CA 91711
Phone: (909) 621-7082
Fax: (909) 948-8613
E-mail: myersware@cs.com

